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Abstract

This work is related with the proposition of a so-called regular or convex solver potential to be used in numerical

simulations involving a certain class of constitutive elastic-damage models. All the mathematical aspects involved are

based on convex analysis, which is employed aiming a consistent variational formulation of the potential and its

conjugate one. It is shown that the constitutive relations for the class of damage models here considered can be derived

from the solver potentials by means of sub-differentials sets. The optimality conditions of the resulting minimisation

problem represent in particular a linear complementarity problem. Finally, a simple example is present in order to

illustrate the possible integration errors that can be generated when finite step analysis is performed.
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1. Introduction

Variational methods represent a powerful tool for consistent constitutive modelling on non-linear

mechanics. Specially in the elasto-plasticity field those methods have been successfully employed (Feij�oo
and Zouain, 1990; Comi et al., 1992; Han and Chen, 1986).

On the other hand, continuum damage mechanics has been applied aiming to model the non-linear
response induced on several materials by the evolution of a microcraking process (Krajcinovic and Fon-

seka, 1981; Lemaitre and Chaboche, 1990).

At the S~ao Carlos School of Engineering the issue of variational formulation of constitutive models for

continuous damage materials was preliminarily addressed in 1988 (Proenc�a, 1988). More recently, a doc-

toral thesis related to the subject was concluded (Balbo, 1998), where several mathematical aspects of

interest were discussed and detailed, including a material instability analysis. Some results obtained in it
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have been already published and this article is in agreement with the results found in Proenc�a and Balbo

(1997a,b, 1998).

If one considers an ideal continuous elastic-damage material whose constitutive response is characterised

by an initial linear elastic regime followed by a linear softening patch, the associated potential results non-
convex, since it is formed by the addition of a convex part related to the elastic response plus a concave part

correspondent to the linear softening regime. The non-convexity intrinsic to the problem induces numerical

crises if algorithms based on the minimisation of a convex potential are employed when attempting to

account for such constitutive models.

In order to avoid numerical inconsistencies when using those kinds of minimisation algorithms, this

work proposes a solver convex potential, which allows verifying the elastic-damage constitutive relations

in a step by step procedure.

The detailed variational formulation of the solver potential and its conjugate here presented is based on
Convex Analysis concepts (Ekeland and Temam, 1976; Rockafellar, 1970; Panagiotopoulos, 1985, 1993;

Mistakidis and Stavroulakis, 1998). One justify the solver and convex adopted denominations mainly by the

reason that the potential is defined by an additive composition of a strictly convex elastic potential and a

damage potential which is convex on the damage variable. In particular, the solver label is also justified by

the fact that the optimality conditions correspondent to the minimisation problem of the proposed convex

potential account for the linear softening branch of the constitutive model.

The paper is organized as follows. In Section 2 the local form of the constitutive relation for an ideal

elastic-damage material is presented. The assumed correspondence between the damage evolution and a
certain amount of energy released by the medium is one important feature of the model pointed out in this

section. The amount of energy liberated for stable damage evolution is supposed to be upper bounded.

Section 3 deals with the variational formulation in rates of the constitutive model. In Section 4 the solver

convex potential is presented. All the propositions related to its assumed mathematical properties are

detailed. In Section 5 the existence of the conjugate (dual) potential is proved. A proper form of the po-

tential to conduce numerical simulations is then introduced in Section 6. This form involves both finite

increments of strains and damage multiplier. In Section 7 a simple numerical example consisting of a truss

bar submitted to axial traction is presented. The main aim is to illustrate the exact representation of the
constitutive model imposed by the solver potential when a finite step analysis is performed. As a conse-

quence of the incremental procedure eventually adopted––purely explicit, for instance––the example shows

that near a fully damage state a negative residual material rigidity can be generated if the strain step

overpasses the strain limit corresponding to the prescribed maximum damage work. In order to avoid such

possibility a procedure to correct the strain step is then suggested. Finally, in Section 8 an extension of the

potential to include the non-associative damage rule is commented.
2. An elastic-damage constitutive relation in rates

In what follows it is assumed that the continuous solid occupies a region B in the Euclidean pointwise

space (Hilbert Space with finite dimension), being Cu and Cs its complementary boundaries where Dirichlet

and Neumann conditions are respectively prescribed. The deformation response is supposed to be enclosed
on a regime of small strains. The idealised constitutive behaviour of the medium is characterised by a linear

elastic domain followed by a linear softening one. Locally, the damage penalises the initial rigidity and no

permanent strains remain on unloading. The elastic rigidity E of the damaged medium is supposed to be a

function of an amount w of energy, or damage work, dissipated in correspondence to damage progress. The

damage work is assumed to be upper bounded and the correspondent maximum damage level meaning

a local rupture.
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Actually, the assumption of no permanent strains remaining on unloading is here adopted to simplify the

analysis. Nevertheless, it could be representative of concrete materials in dominant traction regimes. The

linear softening regime was assumed with the same purpose. Moreover, it could also be justified as a

suitable idealisation for concrete.
In order to consider an evolution process, at any point x 2 B the local rate form of the constitutive

relations can be expressed as follows:
_r ¼ EðwÞ_eþ _EðwÞe ¼ _re þ _rd ð1Þ

f ðe;wÞ6 0 ð2Þ

w� w6 0 () gða;wÞ ¼ �a� ðw� wÞ6 0 ð3Þ

_rd ¼ � _khðe;wÞ ð4Þ

_w ¼ � _krðe;wÞ ð5Þ

f 6 0; _kP 0; _kf ¼ 0 ð6Þ

if f ¼ 0 then _k _f ¼ 0; _f 6 0 ð7Þ
In Eqs. (1)–(3): _rd is the relaxed stress rate tensor due to damage effects, the scalar valued function f is

proposed as a criteria for damage evolution and w represents a given upper bound limit for the dissipated

energy. The tensor hðe;wÞP 0 is assumed to be normal to the boundary surface of an �elastic-damage

potential� and rðe;wÞ6 0 is a scalar valued function which records the previous irreversible history by means
of w. In the associative case the tensor h can be assumed as fe, representing the gradient of the scalar

function f with respect to the strain tensor e. The complementary and consistency conditions, Eqs. (6) and

(7) account for the irreversibility of the damage evolution process, respectively.

Looking at Eq. (3) a scalar slack variable aP 0 is introduced, meaning the quantity of energy to be

locally dissipated until rupture. Then, if one considers a scalar valued function gða;wÞ defined as indicated

in Eq. (3), an additional complementary condition may be stated:
ga ¼ 0 with g6 0 and aP 0 ð8Þ
As _g ¼ � _a� _w and as _g6 0, then � _w6 _a6 0. In particular, if _g ¼ 0 then: _a ¼ � _w. This kind of comple-

mentarity condition will be explored later in the variational formulation.

One way to explicit the �damage rate multiplier� _k follows from the consistency condition, Eq. (7), by
considering Eqs. (2) and (5):
_f ¼ fe � _eþ fw _w ¼ fe � _e� _kfwrðe;wÞ ð9Þ
Thus,
_k ¼ fe � _e
fwrðe;wÞ

¼ fe � _e
G

> 0 ð10Þ
where G ¼ fwrðe;wÞ > 0 is the elastic-damage modulus, assumed to be positive. Furthermore, fe:_e > 0
indicates that if damage evolution occurs then the deformation rate �vector� appoints to the outside of the

elastic domain f 6 0.
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By substituting Eq. (10) into Eq. (4) the expression for _rd reads:
_rd ¼ � h� fe
G

� �
_e ð11Þ
As can be observed, this tensor rate is not symmetric. Nevertheless, its symmetry can be recovered
by assuming an associative rule between h and fe. In such a case:
_rd ¼ � fe � fe
G

� �
_e ð12Þ
By combining then Eqs. (1) and (11) and considering the non-associative case the constitutive relation

can be expressed as:
_r ¼ EðwÞ
�

� h� fe
G

� ��
_e if _k > 0 ð13Þ
or in the associative case as:
_r ¼ EðwÞ
�

� fe � fe
G

� ��
_e if _k > 0 ð14Þ
Using Eqs. (5) and (10), the damage work evolution can be expressed as:
_w ¼ � fe � _e
G

r or _w ¼ � fe � :_e
fw

ð15Þ
On what concerns to the slack variable, being _g ¼ 0, from Eq. (8) one obtains:
_a ¼ � _w ¼ fe � _e
fw

:

Finally, it is possible to find a relation between _a and _k, expressed by
_k ¼ w _a with w ¼ r�1
6 0 ð16Þ
where w is given by:
w ¼ ðfe � _eÞ � Ew

kfek2
ð17Þ
accounting for the associative case.
3. Variational formulation of the constitutive model in rates

In what follows some general assumptions are considered:

(i) Let W � and W not empty dual associated vectorial sub-spaces to B, containing respectively the tensor

rates of stresses and strains. The linear vector space associated to B and the sub-spaces W � and W are

endowed with the following norms:
kxBk ¼
Z
B
x � xdB

� �1=2

; k_ekw ¼
Z
B

_e � _edB
� �1=2

; k _rkw ¼
Z
B
_r � _rdB

� �1=2

ð18Þ
with x 2 B, _e 2 W and _r 2 W �.
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Between the dual spaces a so called duality product is introduced and defined as:
h _r; _eiW�W � ¼
Z
B
_r � _edB ð19Þ
(ii) In the consistency and complementary Eqs. (6) and (7), f and _k are being assumed as scalars.

Although, the cases where _k and f are assumed to be vectors could also be included. Then, for generality

the damage rate multiplier _k and the damage criteria f are here considered to belong to the dual spaces K
and K� in B, both respectively endowed with the following norms:
k _kkK ¼
Z
B

_k � _kdB
� �1=2

; kf kK� ¼
Z
B
f � f dB

� �1=2

ð20Þ
Between the dual spaces K and K�, a duality product is also introduced and defined as:
hf ; _kiK�K� ¼
Z
B
f � _kdB ð21Þ
Furthermore, it is convenient to define the following sets:
Kþ
f ¼ f _kP 0=f _k ¼ 0 8x 2 Bg ð22Þ

Kf ¼ f _kP 0; 8x 2 Bg ð23Þ

Kg ¼ f _a6 0; 8x 2 Bg ð24Þ

It must be noted that, by convenience, in Eq. (22) f and _k were again treated as scalars.

(iii) f ¼ f ðe;wÞ is a regular (non-strictly) convex scalar valued function of the field e 2 W and the scalar

w; fe ¼ feðe; kÞ is a linear operator of W � K in W � � K, assumed as:

(iii.1) lower and upper bounded in Kf , i.e., there are constants h0 > 0 and h00 > 0 such that
h0k _kkK P kfe _kkW � P h00k _kkK 8 _k 2 Kf ð25Þ

This property implies k _rdkW � ¼ k � fe _kkW � 6¼ 0 and finite. Furthermore, the upper bound also implies

that there is only one _k 2 Kf such that fe _k is equal to a certain _rd prescribed.

(iii.2) fe _k is continuously dependent of _e 2 W , i.e., for h1 > 0,
jh_e; fe _kij6 h1k_ekW k _kkK 8 _k 2 K; 8 _e 2 W ð26Þ

This property ensures that the rate of dissipated energy jh_e; fe _kij is finite. Then, the damage process is

continuous and limited.

(iv) The elastic tensor E is symmetric and positive definite. Then, for h2 P 0 and h3 P kEk1, where
kEk1 ¼ maxi

P
j;k;l jEijklj, the following condition is valid:
h2k_ek2W 6 hE_e; _ei6 h3k_ek2W 8 _e 2 W ð27Þ

(v) In the general case, the elastic-damage modulus G is positive semi-definite operator such that for

h4 P 0 and h5 P kGk1,
h4k _kk2K 6 hG _k; _ki6 h5k _kk2K 8 _k 2 Kf ð28Þ
In particular, the proposed elastic-damage model G is a non-negative number, as defined by Eq. (10).

(vi) For _k 2 Kþ
f , the complementarity and consistency conditions, Eqs. (6) and (7), respectively, may

be expressed in an equivalent variational form as
h _f ; _k� � _ki ¼ hfe � _e� _kfwrðe;wÞ; _k� � _ki6 0; 8 _k� 2 Kþ
f ð29Þ
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4. A solver convex potential for the elastic-damage model

Let be considered initially a potential / : W � K ! R defined as:
/ð_e; _kÞ ¼ f1=2 hE_e; _ei þ h� _kfe; _ei þ 1=2 hG _k; _kig ð30Þ
The idea behind such proposition is to avoid a complex treatment of the variational form of the model

discussed so far, since its potential is non-convex. In order to explore only convex analysis tools, the

regularizing or solver convex potential above is here introduced. The properties of the potential are dis-

cussed on what follows and warrants that the local constitutive relations, correspondent even to the elastic

or elastic-damage regimes can be verified at each step of the analysis.

The proposed potential is endowed with the following properties:

(P1) / is convex in the variables _e 2 W and _k 2 Kþ
f .

Proof. This property is ensured immediately from Eqs. (27) and (28), as the operator E is symmetric,

positive definite and the damage modulus G is non-negative. h

(P2) / is continuum in the variables _e 2 W and _k 2 Kþ
f .

Proof. In order to prove such proposition as a first step the continuous dependence of / on the variable
_e 2 W is shown.

Then, for any _e�, _e 2 W , such that, k_e� � _ekBhd; di0, and for any _k 2 Kþ
f :
j/ð_e�; _kÞ � /ð_e; _kÞj ¼ j1=2 hE_e�; _e�i � 1=2 hE_e; _ei � h _kfe; _e�i þ h _kfe; _eij
6 j1=2 hEð_e� þ _eÞ; _e� � _ei þ h _kfe; _e� _e�ij
6 1=2kEk1k_e� þ _ekBk_e� � _ekB þ k _kfekW �k_e� _ekB
6 1=2h5k_e� � _ekBk_e� þ _ekB þ h0k _kkKk_e� � _ekB
6Kk_e� � _ekB;
where K ¼ 1=2h5k_e� þ _ekB þ h0k _kkK.
Hence, / is continuously dependent of _e.
Analogously it can be proved that / is continuously dependent on _k 2 Kþ

f . h

(P3) / is coercive in the variables _e 2 W and _k 2 Kþ
f .

Proof. The proof of the coerciveness with respect to _e 2 W for a given _k 2 Kþ
f , can be constructed as

follows:
/ð_e; _kÞ ¼ f1=2 hE_e; _ei þ h� _kfe; _ei þ 1=2 hG _k; _kig
P h2k_ek2W � jh_e; _kfeij þ 1=2 hG _k; _ki
P 1=2h2k_ek2W � jh_e; _kfeij
P 1=2h2k_ek2W � h1k_ekW k _kkK
¼ ð1=2h2k_ekW � h1k _kkKÞk_ekW
Hence, limk_ek!þ1 /ð_e; _kÞ ¼ þ1 and /1 is coercive in _e 2 W .
Analogously, it can be proved that / is coercive in _k 2 Kþ

f . h
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Proposition 4.1. The potential / defined by relation (30) reaches its infimum in W and Kþ
f , i.e., there is a

solution for the following infimum problem,
inf
_k2Kþ

f

inf
_e2W

/ð_e; _kÞ ¼ inf
_k2Kþ

f

inf
_e2W

f1=2 hE_e; _ei � h _kfe; _ei þ 1=2 hG _k; _kig ð31Þ
Proof. Being W and Kþ
f non-empty closed sets and considering the convexity, continuity and coerciveness of

/ in the variables _e 2 W and _k 2 Kþ
f , then according to Proposition A.2.1, Appendix A.2, / is weakly lower

semi-continuous (l.s.c.) and presents the growth property. Therefore, considering also the results ruled in the

Appendix A.2 (Proposition A.2.2) / is bounded in the variables _e 2 W and _k 2 Kþ
f . As a consequence of the

previous results, there is an infimum to / in the sets W and Kþ
f and / reaches its infimum in these sets, i. e.,

there is solution for the infimum problem given by Eq. (31).

Taking into account the present results, the former infimum problem is equivalent to:
inf
_e2W

inf
_k2Kþ

f

f1=2 hE_e; _ei � h _kfe; _ei þ 1=2 hG _k; _kig � ð32Þ
Remark. The infimum form above, where the _e follows from a given _k, is not so useful to proceed a solid

mechanics analysis. Actually, a more convenient form is the one expressed by Eq. (31), where _k follows

from a given _e. Anyway, Eq. (32) will be used in the proof of the proposition that follows.

Proposition 4.2. If / admits an infimum in W and Kþ
f , then / is l.s.c. in W and Kþ

f .

Proof. Let _e� 2 W and _k� 2 Kþ
f be assumed as the variables correspondent to the infimum of /. Then / is

l.s.c. in _e 2 W and in agreement with Definition A.1.3 (Appendix A.1), and for n ! 1:
lim
_en!_e�

inf
_en2W

inf
_k2Kþ

f

/ð_en; _kÞ
" #

¼ lim
_en!_e�

inf
_e2W

inf
_k2Kþ

f

f1=2 hE_en; _eni
"

� h _kfe; _eni þ 1=2 hG _k; _kig
#

P lim
_en!_e�

inf
_e2W

f1=2 hE_en; _eni
�

� h _k�fe; _eni þ 1=2 hG _k�; _k�ig
�

P f1=2 hE_e�; _e�i � h _k�fe; _e�i þ 1=2 hG _k�; _k�ig ¼ /ð_e�; _k�Þ
Thus, lim_en!_e� ½inf _en2W inf _k2Kþ
f
/ð_en; _kÞ�P/ð_e�; _k�Þ.

Analogously it can be showed that / is l.s.c. in _k 2 Kþ
f . h

Proposition 4.3. The functional / is proper in the variables _e 2 W and _k 2 Kþ
f .

Proof. As / is proper in the variable _e 2 W then /ð_e; 0Þ ¼ 1=2 hE_e; _eiP 0, and it assumes a finite value in
hypothesis of small displacements and strains.

Furthermore, /ð_e; _kÞ > �1 so, for _e� 2 W assumed as infimum for / in W and with _k 2 Kþ
f :
/ð_e; _kÞP f1=2 hE_e�; _e�i þ h� _kfe; _e�i þ 1=2 hG _k; _kig
P 1=2 hE_e�; _e�i þ h� _kfe; _e�iP 1=2 hE_e�; _e�i � jh _kfe; _e�ijP �1
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Therefore, being 1=2 hE_e�; _e�iP 0 and considering the inequality
�jhfe _k; _e�ijP � h1k_e�kW k _kkK > �1

which is in agreement with Definition A.1.2 (Appendix A.1), / is proper in the variable _e 2 W .

Analogously it follows that / is proper in _k 2 Kþ
f . h

Proposition 4.4. / is differentiable in the variables _e 2 W and _k 2 Kþ
f .

Proof. By using the total differential absolute value with relation to the variables _e 2 W and _k 2 Kþ
f and

considering _e� 2 W and _k� 2 Kþ
f such that _e� ! _e and _k� ! _k, then:
j/ð_e�; _k�Þ � /ð_e; _kÞ � hE_e; _e� � _ei � h� _kfe; _e� � _ei þ h _k� � _k; fe _ei � hG _k; _k� � _kij
¼ j1=2 hEð_e� � _eÞ; _e� � _ei þ h�ð _k� � _kÞfe; _e� � _ei þ 1=2 hGð _k� � _kÞ; _k� � _kij
6 1=2h2k_e� � _ek2B þ h1k_e� � _ekBk _k

� � _kkB þ 1=2h5k _k� � _kk2B

Such result implies that / is differentiable for _e� ! _e and _k� ! _k.

Thus, / is differentiable in the variables _e 2 W and _k 2 Kþ
f . h

Proposition 4.5. If / is convex, l.s.c., proper and differentiable in _k 2 Kþ
f , then the consistency conditions of the

elastic-damage model represented by the variational Eq. (29), are satisfied.

Proof. Since that / is convex, l.s.c., proper and differentiable in _k� 2 Kþ
f , then 9 _k 2 Kþ

f assumed as infimum

to / in Kþ
f , satisfying the optimality conditions:
hrk/ð_e; _k�Þ; _k� � _kiP 0; 8 _k� 2 Kþ
f () h�fe � _eþ G _k�; _k� � _kiP 0; 8 _k� 2 Kþ

f

or hfe � _e� G _k�; _k� � _ki6 0; 8 _k� 2 Kþ
f ð33Þ
which is equivalent to consistency conditions for the elastic-damage model. h
5. Existence for the conjugate (dual) functional /*

Since for some _k 2 Kþ
f , / is a convex functional, l.s.c., proper and defined in a non-empty set W , when

written in terms of _e 2 W , then, in agreement with Definition A.3.1 and considering the assumption of W �

to be a non-empty set, there is a conjugated potential /� : W � ! �R verifying the following condition:
/�ð _r; _kÞ ¼ sup
_e2W

fh _r; _ei � /ð_e; _kÞg 8 _r 2 W �: ð34Þ
For /�ð _r; _k�Þ < 1, there are sub-differential sets oe/
�ð_e; _k�Þ and or/

�ð _r; _k�Þ, which are closed and non-

empty, such that the following relations of duality may be established:
_r 2 oe/ð_e; _kÞ () _e 2 or/
�ð _r; _kÞ ð35Þ
where, being _k� 2 Kþ
f

oe/ð_e; _kÞ ¼ fc� 2 W � : 8 _e� 2 W ;/ð_e�; _kÞ � /ð_e; _kÞP h_e� � _e; c�ig ð36Þ

The sub-differential or/

�ð _r; _k�Þ may be defined analogously.

Since / is differentiable in _e 2 W , then _r is uniquely determined by oe/ð_e; _k�Þ. Hence,
_r ¼ re/ð_e; _k�Þ ¼ E_e� _kfe ¼ _re � _rd ð37Þ
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Therefore, the following duality relation is valid:
_r ¼ re/ð_e; _k�Þ () _e 2 or/
�ð _r; _kÞ ð38Þ
The relation _e ¼ rr/
�ð _r; _k�Þ is not verified for all _k 2 Kþ

f . In fact, it may exist _e1 and _e2 belonging

to or/
�ð _r; _kÞ and correlated to one unique _r 2 W �. Hence, /� is not always differentiable in _r 2 W �.

So far we have been concluded that / is a convex, l.s.c., proper and differentiable potential in the

variables _e 2 W and _k 2 Kþ
f . Such potential verifies the optimality conditions found in Eq. (33). Further-

more, there is a conjugate (dual) potential /� related to / and verifying Eq. (38).

Taking into account Eq. (38) and the result derived from the Proposition A.3.2, the following relation

between the functionals /� and / becomes valid:
/�ð _r; _kÞ þ /ð_e; _kÞ ¼ h _r; _ei () _r 2 oe/ð_e; _kÞ and _e 2 or/
�ð _r; _kÞ
In what follows, the incremental variational form of the elastic-damage model is presented. It is useful

for the goal of numerical simulations.
6. Incremental variational form

The restrictive condition _k 2 Kþ
f can be relaxed if one considers an indicator function IKþ

f
defined as:
IKþ
f
¼ 0 if _k 2 Kþ

f

þ1 if _k 2 Kf � Kþ
f

(
ð39Þ
The indicator may be introduced into the model by means of the following asymptotic approximation:
IKþ
f
¼ ð�1=dÞ

Z
B
f _kdB with d ! 0þ: ð40Þ
Therefore, by considering such an approximation the potential defined in the expression (30) becomes:
/dð_e; _kÞ ¼ 1=2 hE_e; _ei
�

� h _kfe; _ei þ 1=2 hG _k; _ki þ f
d
; _k

� ��
ð41Þ
8 _k 2 Kf and d ! 0þ. As d ! 0þ, then _r 2 oe/dð_e; _kÞ converges to _r 2 oe/ð_e; _kÞ.
Finally by the substitution of _k ¼ w _a, defined in Eq. (16), one arrives to the equivalent potential:
/dð_e; _aÞ ¼ 1=2 hE_e; _ei
�

� hw _afe; _ei þ 1=2 hGw _a;w _ai þ f
d
;w _a

� ��
ð42Þ
8 _a 2 Kg with d ! 0þ. It should be noted that _k 2 Kf implies _a 2 Kg.

An incremental variational form results from a time discretization as,
Dr ¼ _rDt; De ¼ _eDt; Da ¼ _aDt ð43Þ

By substitution of Eq. (43) into Eq. (42), with Da 2 Kg, the following potential results as a function of

incremental variables:
/dðDe;DaÞ ¼ 1=2 hEDe;Dei
�

� hwDafe;Dei þ 1=2 hGwDa;wDai þ Dt
f
d
;wDa

� ��
ð44Þ
In particular, taking d ¼ Dt, an extended functional result:
~/ðDe;DaÞ ¼ f1=2 hEDe;Dei � wDafe;Dei þ 1=2 hGwDa;wDai þ hf ;wDaig ð45Þ
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Locally, with Dk 2 Kf or 8Da 2 Kg the optimality conditions are:
½f þ fe � De� GDk� ¼ ½f þ fe � De� wGDa�6 0 ð46Þ

½f þ fe � De� GDk� � Dk ¼ ½f þ fe � De� wGDa� � wDa ¼ 0 ð47Þ

The local Eqs. (46) and (47) are equivalent to a linear complementarity problem which can be solved by

mathematical programming methods. In particular, if f is piecewise linear, an algorithm able to solve Eq.

(46) gives exact increments Dk or Da, verifying f ¼ 0 at the step t þ Dt. As a consequence, the constitutive

relation is represented in an exact way for any Dt that does not imply damage followed by unloading.
7. Numerical example

The formulation discussed so far is general in the sense that it may be applied to handle with large

problems. Nevertheless, we limit here the application to a very simple example. The aim is to point out the

possibility given by the solver potential of an exact representation of the constitutive model when a finite step

analysis is performed. The characteristics of the structure and constitutive model are illustrated in Fig. 1.

In the uniaxial case, the general relations including the optimality conditions for incremental analysis
are:
a� ðw� wÞ6 0 ð48Þ

½�a� ðw� wÞ�a ¼ 0; aP 0 ð49Þ

w ¼ �r�eðe� � eeÞ
2ð�e� eeÞ ð50Þ

f ¼ e� e� ¼ e� 2wð�e� eeÞ
�r�e

 !"
þ ee

#
ð51Þ

fe ¼ 1; fw ¼ � 2ð�e� eeÞ
�r�e

ð52Þ

E� ¼ 1

�
� 2w
Eeee�

�
E ð53Þ

w ¼ ðfe � e�Þ � Ewd

kfek2
; w6 0 ð54Þ
E = 1000
S = 1
L = 10

σ

ε
ε = 0.04
_

ε*εe

L

u
P

w d
σ  = 10
_

E*E

ε  = 0.01
e

Fig. 1. Truss element submitted to uniaxial traction.
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Fig. 2. Numerical response.
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½f þ fe � De� fwdDa� � wDa ¼ 0; 8Da 2 Kg ð55Þ

½f þ fe � De� fwdDa�6 0; ð56Þ

Dw ¼ �Da ð57Þ

Dr ¼ E�De� wDa ð58Þ

For this example in particular, it is possible directly to write expressions for the increments of the dis-

placement Du and the load DP :
½u� u� þ Du� LfwdDa�6 0 ð59Þ
where
f ¼ u� u� ð60Þ

DP ¼ E� Du
L

� wDa ð61Þ
It must be noted that for this case it was adopted w ¼ 0:2. Therefore,
w ¼ �2e�

ð0:15wd þ 0:01Þ2
ð62Þ
The numerical response obtained is illustrated in Fig. 2.

The history of loading illustrated includes an unloading between the steps 2 and 4, and two possibilities

of loading from step 4. In the first possibility the increment of displacement leads to a deformation which is

in exact correspondence with the prescribed limit value for the maximum dissipated energy w. Beyond this

point the rigidity is identically annulled for any additional increment. In the second possibility of loading

the increment of displacement overpasses the energy limit. As a consequence a residual rigidity appears

which is illustrated in Fig. 2 by a dotted line through points 7 and 8. The main numerical results are
outlined in Table 1.

7.1. On a correction for the strain step

The definition proposed for the slack variable (aP 0) does not eliminate a possibility where:
a ¼ 0 and w� w > 0 ð63Þ



Table 1

Numerical results

Points Du Da w DP u� e� w E� f

A 0.08 0 0 8 0.1 0.01 0 1000 )0.02
1 0.05 )0.02 )200 1 0.13 0.013 0.02 692.30 0

2 0.09 )0.06 )153.85 )3 0.22 0.022 0.08 272.73 0

3 )0.03 0 � )0.82 0.19 0.019 0.08 272.73 )0.03
4 0.09 )0.04 )90.91 )1.182 0.28 0.028 0.12 142.85 0

5 0.12 )0.08 )71.43 )4 0.4 0.04 0.2 0 0

6 0.03 0 )71.43 0 0.43 0.043 0.2 0 0

7 0.15 )0.1 )71.43 )5 0.43 0.043 0.22 )23.25 0

8 0.03 0 )46.51 )0.07 0.46 0.046 0.22 )23.25 0
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Such a case implies a violation of the following condition:
e6�e ð64Þ

and a residual rigidity can appear. In order to avoid that inconvenience a relaxation function is introduced,

being defined as:
jðb; eÞ ¼ �b� ð�e� eÞ6 0 with bP 0 ð65Þ

Therefore, a complementary problem results:
if j < 0 ) b ¼ 0 and e < �e
if j ¼ 0 ) eP�e ) b ¼ e� �eP 0

�
ð66Þ
where the condition j < 0 and b ¼ 0 implies that Eq. (64) is satisfied, while j ¼ 0 and bP 0 represents the

violation of it. It is now possible to set a complementary relation between a and b as:
a � b ¼ 0 () a ¼ wd � wd P 0; b ¼ 0 and eP�e
a ¼ 0; wd

6wd and b ¼ e� �eP 0

�
ð67Þ
The first possibility (aP 0 and b ¼ 0) implies that g � a ¼ 0, with g6 0, and that Eq. (64) is satisfied. The

second possibility (a ¼ 0 and b > 0) implies violation of g6 0 and Eq. (64). Finally, a correction for the

total strain � in the current step results from:
e ¼ e� if aP 0 and b ¼ 0; e ¼ e� � b if a ¼ 0 and b > 0 ð68Þ

where �� is the total strain presently imposed. With the corrected value of � it is then possible to determine

the damage energy variable w and the elastic-damage tensor E.
Coming back to the numerical example, by applying the correction given by Eq. (68) and considering the

results illustrated in Fig. 3, it may be observed that:
P

u

B10
A

1
2

43

5=7 8

Fig. 3. Corrected numerical response.
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ii(i) the points A, 1, 2, 3 and 4 present aP 0 and b ¼ 0 or e ¼ e�;
i(ii) imposing a displacement Du ¼ 0:15 from the point 4 the correction procedure leads to b ¼

e� �e ¼ 0:003 and e ¼ e� � b ¼ 0:043� 0:003 ¼ 0:04. By substitution of such value into Eqs. (50)

and (53) one can obtain w ¼ 0:2 and E� ¼ 0 (point 7).
(iii) beyond that point, any additional displacement (point 8) gives to a ¼ 0, w ¼ 0:2 and E� ¼ 0.
8. Extension to the non-associative case

The potentials /, /d and
~/ defined by (30), (42) and (45), respectively, may be defined in order to include

the non-associative case. In fact, the relations of the associative case may be extended straightforward

to the non-associative case. This is done by using the vector h, which is defined in relation (4) such

that _r ¼ � _kh ¼ w _ah.
9. Conclusions

A convex damage potential, written as the sum of a potential of the strains and a potential of the damage

variable has been defined. Applying convexity concepts and assuming some properties, the existence of a

convex conjugate potential was proved. Also, it was shown that with the sub-differential sets of that po-

tential it is possible to derive the constitutive relation for an elastic-damage material in rates, including the
complementarity and consistency conditions. The incremental form of the model was then introduced

aiming the numerical simulations. A simple example was proposed to point out the possibility of an exact

verification of the constitutive model if linear softening is assumed and the displacement increment does not

violate the adopted limit for the total dissipated energy. If this condition for the displacement increment

does not hold a sufficient accurate response can be obtained providing small steps or by using a step

deformation correction. It should also be pointed out that the solver proposition here stated is general in

the sense that it may be extended to handle with more general constitutive relations. For instance, both

elastoplastic-damage response and different softening laws could be considered. Finally, the formulation
here proposed is feasible to establish kinematical, equilibrium and mixed principles in the solid mechanics.
Appendix A

This Appendix A is divided in three parts and it is in agreement with the results found in Ekeland and

Temam (1976) and Rockafellar (1970).
A.1. Proper functional, coercive functional and semi-continuity of a functional

The definitions and propositions included here were used to prove the results proposed in Section 4.

The extrema values of a semi-continuous real functional in a minimisation problem may be �1 or þ1.

Obviously, the results depend of the assumptions done over the functionals and of the sets on which they

operate, as will be seen in this Appendix A.

Definition A.1.1 (Extended real set). The extended real set R is defined as the union of the real set R

including the limits values at the �1 and þ1, i.e. R ¼ ½�1;þ1�.
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Definition A.1.2 (Proper functional). Let X be a normalised vectorial space (NVS). Then a real functional

f : X ! R is proper if f is not identically equal to þ1 and if f does not reach the �1 value.

Definition A.1.3 (Semi-continuity of a functional). A functional f : X ! R is said to be l.s.c. at x0 2 X if for
all sequence fxng, xn 2 X , convergent to x0ðxn ! x0Þ, the following condition is verified
lim
n!1

inf f ðxnÞP f ðx0Þ;
Definition A.1.4 (Weak semi-continuity). The functional f : X ! R is said to be weakly l.s.c. at x0 2 X if for

all sequence fxng, xn 2 X , weakly convergent to x0, it is verified that:
lim
n!1

inf f ðxnÞP f ðx0Þ:
Definition A.1.5 (Coercive functional). The functional f : X ! R is said coercive if for all divergent sequence

fxng, xn 2 X , such that kxnkE ! þ1, (k � kE is the Euclidean norm) then f ðxnÞ ! þ1, i.e.:
lim
kxnk!1

f ðxnÞ ¼ þ1
Definition A.1.6 (Growing property). The functional f : X ! R is said to present the Growing property
at x0 2 X if there is an scalar r > 0 such that f ðxÞP f ðx0Þ, 8x 2 X , which satisfy:
kx� x0kE > r:
Proposition A.1.1. If f : X ! R is coercive, then f presents the Growth Property at all x 2 X .

A.2. The existence of a minimum for a continuum convex functional

The propositions that follow were used in Section 4.

Proposition A.2.1. Let X be a NVS and C � X a non-empty convex closed subset.

If f : X ! R, is a continuum convex and coercive functional, then f is weakly l.s.c. and presents the

growing property at some x0 2 C.

Proposition A.2.2. Let X be a NVS and C � X a non-empty convex closed subset.

If f : X ! R, is a weakly l.s.c. functional presenting the growth property at some x0 2 C, then f is bounded,

reaching its minimum in C.

A.3. Conjugate convex functional

The propositions that follow were used in Section 5.

Definition A.3.1 (Fenchel�s conjugated functional or the Legendre�s transform). Let X be a NVS, C � X a non-

empty convex closed subset of it and X � the dual NVS of X .
Being f a continuum convex functional defined on C, it is possible to define a conjugated set, denoted

by C� and expressed as:
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C� ¼
�
x� 2 X � : sup

x2C
½hx�; xi � f ðxÞ� < 1

�
;

Furthermore, there is a conjugated functional, related to f and defined on x� 2 C�. Such a functional

is denoted by f �, and given by:
f �ðx�Þ ¼ sup
x2C

½hx�; xi � f ðxÞ�:
f � is known as the Fenchel�s conjugate functional or the Legendre�s transform.

Proposition A.3.1. If the set ½f ;C� is a non-empty convex closed set then, the conjugate set C� and the con-

jugate functional f � are convex and ½f �;C�� is a non-empty convex closed subset of R� X �. In such case:

½f �;C�� ¼ ½f ;C��.

Proposition A.3.2. Consider C and C�, f and f �, verifying the assumptions of Proposition A.3.1, then the

following inequality is valid:
f �ðx�Þ þ f ðxÞP hx; x�i; 8x� 2 C� and 8x 2 C:
Furthermore, x and x� are said conjugates of f and f � if the equality is verified:
f �ðx�Þ þ f ðxÞ ¼ hx; x�i;
or, in the equivalent form:
x� 2 of ðxÞ and x 2 of �ðx�Þ:
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